Abstract

Aim: The article provides the substantiation, reasonability and main results of developing the «Vizir» national complex for the measurement of the spectropolarization characteristics of two-directional radiant reflectivity and brightness of natural artificial objects. Its purpose, structure and main technical parameters are also given.

Introduction: A complex for the measurement of the spectropolarization characteristics of two-directional radiant reflectivity and brightness of natural artificial objects was developed within the framework of the State scientific and technical programme, entitled “Standards and scientific instruments”, in 2016-2018 by employees of the Department of Aerospace Studies Institute of Applied Physical Problems of A.N. Sevchenko of Belarus State University, in cooperation with the Research Institute of Fire Safety and Emergencies.

Results: As part of the work, the literature regarding goniometric installations, used to measure bidirectional reflectance, was reviewed; the need to develop a national complex for the measurement of the spectropolarization characteristics of two-directional radiant reflectivity and brightness of natural artificial objects, provided with more advanced features as compared to the existing foreign analogues, was proven, allowing to carry out polarization measurements; preliminary results of the work connected with establishing the “Vizir” national complex for the measurement of the spectropolarization characteristics of two-directional radiant reflectivity and brightness of natural artificial objects were presented; the final structure of the developed complex was specified; and the basic technical requirements were defined.

Relevance in practice: In relation to the activity of the Ministry of Emergency Situations of the Republic of Belarus, the “Vizir” complex makes it possible to essentially increase the abilities related to the correct and high-quality thematic processing of the received information and data; to improve the accuracy of determining the parameters of remote monitoring objects, including zones of emergency situations of natural and technology-related character to take into account the consequences of natural and man-made emergencies, as well as the consequences of the anthropogenic impact on natural objects and environmental safety; and to ensure improvements, updating and expansion of the existing base of bench measurements of the spectral, energy and geometric characteristics of aerospace remote sensing systems.

Keywords: reference sample, aerospace monitoring, emergency situations, spectroradiometer, spectral characteristic, pollution, oil product, testing parameters of emergency situations.

Type of article: original scientific article